Search results for "Cyclin-Dependent Kinases"
showing 10 items of 19 documents
Two maize Kip-related proteins differentially interact with, inhibit and are phosphorylated by cyclin D–cyclin-dependent kinase complexes
2017
Highlight Maize Kip-related proteins can be differentially phosphorylated by different cyclin D–cyclin-dependent kinase complexes and this influences their performance as cyclin-dependent kinase inhibitors.
Synthesis, antitumor activity and CDK1 inhibiton of new thiazole nortopsentin analogues
2017
A new series of thiazole nortopsentin analogues was conveniently synthesized with fair overall yields. The antiproliferative activity of the new derivatives was tested against different human tumor cell lines of the NCI full panel. Four of them showed good antitumor activity with GI(50) values from micro to nanomolar level. The mechanism of the antiproliferative effect of these derivatives, was pro-apoptotic, being associated with externalization of plasma membrane phosphatidylserine and DNA fragmentation. The most active and selective of the new thiazoles confined viable cells in G2/M phase and markedly inhibited in vitro CDK1 activity. (C) 2017 Elsevier Masson SAS.
Recent advances on CDK inhibitors: An insight by means of in silico methods
2017
The cyclin dependent kinases (CDKs) are a small family of serine/threonine protein kinases that can act as a potential therapeutic target in several proliferative diseases, including cancer. This short review is a survey on the more recent research progresses in the field achieved by using in silico methods. All the "armamentarium" available to the medicinal chemists (docking protocols and molecular dynamics, fragment-based, de novo design, virtual screening, and QSAR) has been employed to the discovery of new, potent, and selective inhibitors of cyclin dependent kinases. The results cited herein can be useful to understand the nature of the inhibitor-target interactions, and furnish an ins…
Molecular analysis of the 9p21 locus and p53 genes in Ewing family tumors.
2001
The EWS-ETS rearrangements, and their respective fusion gene products, are specifically associated with histopathologically Ewing family tumors (EFT). These translocations are implicated in generating malignant transformation of EFT, but the presence of additional genetic alterations must be considered in the pathogenesis of such tumors. We analyzed 26 samples (biopsies and/or nude mice xenotransplants) collected from 19 patients with an EFT to determine whether molecular and cytogenetic alterations of the G(1)/S checkpoint genes are implicated in the pathogenesis of EFT. We found inactivating p53 mutations in three (16%) cases, which correlated with a loss of p21(WAF1/Cip1) expression and …
TORC1 controls G1–S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway
2015
The target of rapamycin complex 1 (TORC1) pathway couples nutrient, energy and hormonal signals with eukaryotic cell growth and division. In yeast, TORC1 coordinates growth with G1–S cell cycle progression, also coined as START, by favouring the expression of G1 cyclins that activate cyclin-dependent protein kinases (CDKs) and by destabilizing the CDK inhibitor Sic1. Following TORC1 downregulation by rapamycin treatment or nutrient limitation, clearance of G1 cyclins and C-terminal phosphorylation of Sic1 by unknown protein kinases are both required for Sic1 to escape ubiquitin-dependent proteolysis prompted by its flagging via the SCFCdc4 (Skp1/Cul1/F-box protein) ubiquitin ligase complex.…
Differences in the mechanisms of growth control in contact-inhibited and serum-deprived human fibroblasts
1997
In the present work we studied mechanisms of growth control in contact-inhibited and serum-deprived human diploid fibroblasts. The observation that the effects on [3H]thymidine incorporation and reduction of retinoblastoma gene product-phosphorylation were additive when contact-inhibition and serum-deprivation were combined led us to the conclusion that the underlying mechanisms might be different. Both contact-inhibition and serum-deprivation led to a strong decrease of cdk4-kinase-activity and cdk2-phosphorylation at Thr 160, while the total amounts of cdk4 and cdk2 remained constant. In contact-inhibited cells, we revealed a strong protein accumulation of the cdk2-inhibitor p27 and a sli…
Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor.
2014
Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive to transcription-targeting drugs, in particular to THZ1, a recently identified covalent inhibitor of cyclin-dependent kinase 7. We find that expression of super-enhancer-associated transcription factor genes, including MYC family proto-oncogenes and neuroendocrine lineage-specific factors, is highly vulnerability to THZ1 treatment. We propose that downregulation of these transcription factors contribut…
Recent advances in the development of cyclin-dependent kinase 7 inhibitors.
2019
Abstract Cyclin dependent kinase 7 (CDK7) plays a double role as it activates several other cyclin dependent kinases and participates to the initiation of transcription. This kinase is overexpressed in various types of tumors. Relatively few selective CDK7 inhibitors have been up to now disclosed. Most of these inhibitors belong to two chemical families: pyrazolopyrimidines and pyrazolotriazines on one side and pyrimidines on another side. They also differ by their molecular mechanism of action. Some are acting as competitive inhibitors and some others are covalent inhibitors. With these tools, the understanding of the potential therapeutic interest of CDK7 inhibitors in cancer is rapidly g…
Calmodulin binds to p21(Cip1) and is involved in the regulation of its nuclear localization.
1999
p21(Cip1), first described as an inhibitor of cyclin-dependent kinases, has recently been shown to have a function in the formation of cyclin D-Cdk4 complexes and in their nuclear translocation. The dual behavior of p21(Cip1) may be due to its association with other proteins. Different evidence presented here indicate an in vitro and in vivo interaction of p21(Cip1) with calmodulin: 1) purified p21(Cip1) is able to bind to calmodulin-Sepharose in a Ca(2+)-dependent manner, and this binding is inhibited by the calmodulin-binding domain of calmodulin-dependent kinase II; 2) both molecules coimmunoprecipitate when extracted from cellular lysates; and 3) colocalization of calmodulin and p21(Cip…
A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma.
1995
A mutated cyclin-dependent kinase 4 (CDK4) was identified as a tumor-specific antigen recognized by HLA-A2. 1-restricted autologous cytolytic T lymphocytes (CTLs) in a human melanoma. The mutated CDK4 allele was present in autologous cultured melanoma cells and metastasis tissue, but not in the patient's lymphocytes. The mutation, an arginine-to-cysteine exchange at residue 24, was part of the CDK4 peptide recognized by CTLs and prevented binding of the CDK4 inhibitor p16INK4a, but not of p21 or of p27KIP1. The same mutation was found in one additional melanoma among 28 melanomas analyzed. These results suggest that mutation of CDK4 can create a tumor-specific antigen and can disrupt the ce…